培訓(xùn):高考復(fù)讀、中考復(fù)讀、藝考文化課、高中輔導(dǎo)、少兒口才、少兒編程、少兒圍棋、少兒書法、少兒美術(shù)
除了課本上的常規(guī)公式之外,掌握一些必備的秒殺型公式能夠幫你在考試的時(shí)候節(jié)省大量的時(shí)間。這次給大家分享的就是高中數(shù)學(xué)常用的秒殺公式,掌握這些公式會(huì)讓你的數(shù)學(xué)如魚(yú)得水!
1、適用條件:[直線過(guò)焦點(diǎn)],必有ecosA=(x-1)/(x+1),其中A為直線與焦點(diǎn)所在軸夾角,是銳角。
x為分離比,必須大于1。注上述公式適合一切圓錐曲線。如果焦點(diǎn)內(nèi)分(指的是焦點(diǎn)在所截線段上),用該公式;如果外分(焦點(diǎn)在所截線段延長(zhǎng)線上),右邊為(x+1)/(x-1),其他不變。
2、函數(shù)的周期性問(wèn)題(記憶三個(gè)):
(1)若f(x)=-f(x+k),則T=2k;
(2)若f(x)=m/(x+k)(m不為0),則T=2k;
(3)若f(x)=f(x+k)+f(x-k),則T=6k。注意點(diǎn):a.周期函數(shù),
周期必?zé)o限b.周期函數(shù)未必存在最小周期,如:常數(shù)函數(shù)。c.周期函數(shù)加周期函數(shù)未必是周期函數(shù),如:y=sinxy=sin派x相加不是周期函數(shù)。
3、關(guān)于對(duì)稱問(wèn)題(無(wú)數(shù)人搞不懂的問(wèn)題)總結(jié)如下:
(1)若在R上(下同)滿足:f(a+x)=f(b-x)恒成立,對(duì)稱軸為x=(a+b)/2
(2)函數(shù)y=f(a+x)與y=f(b-x)的圖像關(guān)于x=(b-a)/2對(duì)稱
(3)若f(a+x)+f(a-x)=2b,則f(x)圖像關(guān)于(a,b)中心對(duì)稱
4、函數(shù)奇偶性:
(1)對(duì)于屬于R上的奇函數(shù)有f(0)=0
(2)對(duì)于含參函數(shù),奇函數(shù)沒(méi)有偶次方項(xiàng),偶函數(shù)沒(méi)有奇次方項(xiàng)
(3)奇偶性作用不大,一般用于選擇填空
5、數(shù)列爆強(qiáng)定律:
1.等差數(shù)列中:S奇=na中,例如S13=13a7
2.等差數(shù)列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差
3.等比數(shù)列中,上述2中各項(xiàng)在公比不為負(fù)一時(shí)成等比,在q=-1時(shí),未必成立
4.等比數(shù)列爆強(qiáng)公式:S(n+m)=S(m)+q²mS(n)可以迅速求q
6、函數(shù)詳解補(bǔ)充:
(1)復(fù)合函數(shù)奇偶性:內(nèi)偶則偶,內(nèi)奇同外
(2)復(fù)合函數(shù)單調(diào)性:同增異減
(3)重點(diǎn)知識(shí)關(guān)于三次函數(shù):恐怕沒(méi)有多少人知道三次函數(shù)曲線其實(shí)是中心對(duì)稱圖形。它有一個(gè)對(duì)稱中心,求法為二階導(dǎo)后導(dǎo)數(shù)為0,根x即為中心橫坐標(biāo),縱坐標(biāo)可以用x帶入原函數(shù)界定。另外,必有唯一一條過(guò)該中心的直線與兩旁相切。
7、常用數(shù)列bn=n×(2²n)求和Sn=(n-1)×(2²(n+1))+2記憶方法
前面減去一個(gè)1,后面加一個(gè),再整體加一個(gè)2
8、適用于標(biāo)準(zhǔn)方程(焦點(diǎn)在x軸)爆強(qiáng)公式
k橢=-{(b²)xo}/{(a²)yo}k雙={(b²)xo}/{(a²)yo}k拋=p/yo
注:(xo,yo)均為直線過(guò)圓錐曲線所截段的中點(diǎn)。
9、隔項(xiàng)相消:
對(duì)于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]
注:隔項(xiàng)相加保留四項(xiàng),即首兩項(xiàng),尾兩項(xiàng)。自己把式子寫在草稿紙上,那樣看起來(lái)會(huì)很清爽以及整潔!
10、求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n為正整數(shù))的最小值。
答案為:當(dāng)n為奇數(shù),最小值為(n²-1)/4,在x=(n+1)/2時(shí)取到;當(dāng)n為偶數(shù)時(shí),最小值為n²/4,在x=n/2或n/2+1時(shí)取到。
11、橢圓中焦點(diǎn)三角形面積公式
S=b²tan(A/2)在雙曲線中:S=b²/tan(A/2)說(shuō)明:適用于焦點(diǎn)在x軸,且標(biāo)準(zhǔn)的圓錐曲線。A為兩焦半徑夾角。
12、空間向量三公式解決所有題目
cosA=|{向量a.向量b}/[向量a的模×向量b的模]|
一:A為線線夾角
二:A為線面夾角(但是公式中cos換成sin)
三:A為面面夾角注:以上角范圍均為[0,派/2]
13、切線方程記憶方法
寫成對(duì)稱形式,換一個(gè)x,換一個(gè)y。
舉例說(shuō)明:對(duì)于y²=2px可以寫成y×y=px+px再把(xo,yo)帶入其中一個(gè)得:y×yo=pxo+px
14、對(duì)于y²=2px,過(guò)焦點(diǎn)的互相垂直的兩弦AB、CD,它們的和最小為8p。
定理的證明:對(duì)于y²=2px,設(shè)過(guò)焦點(diǎn)的弦傾斜角為A.那么弦長(zhǎng)可表示為2p/〔(sinA)²〕,所以與之垂直的弦長(zhǎng)為2p/[(cosA)²],所以求和再據(jù)三角知識(shí)可知。(題目的意思就是弦AB過(guò)焦點(diǎn),CD過(guò)焦點(diǎn),且AB垂直于CD)
15、關(guān)于解決證明含ln的不等式的一種思路:
舉例說(shuō)明:證明1+1/2+1/3+…+1/n>ln(n+1)把左邊看成是1/n求和,右邊看成是Sn。
解:令an=1/n,令Sn=ln(n+1),則bn=ln(n+1)-lnn,那么只需證an>bn即可,根據(jù)定積分知識(shí)畫出y=1/x的圖。an=1×1/n=矩形面積>曲線下面積=bn。當(dāng)然前面要證明1>ln2。注:僅供有能力的童鞋參考!!另外對(duì)于這種方法可以推廣,就是把左邊、右邊看成是數(shù)列求和,證面積大小即可。說(shuō)明:前提是含ln。
16、離心率公式:
e=sinA/(sinM+sinN)
注:P為橢圓上一點(diǎn),其中A為角F1PF2,兩腰角為M,N
17、
和差化積
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
積化和差
sinαsinβ=[cos(α-β)-cos(α+β)]/2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
18、幾個(gè)數(shù)學(xué)易錯(cuò)點(diǎn):高中數(shù)學(xué)解題公式
1.f`(x)<0是函數(shù)在定義域內(nèi)單調(diào)遞減的充分不必要條件
2.在研究函數(shù)奇偶性時(shí),忽略最開(kāi)始的也是最重要的一步:考慮定義域是否關(guān)于原點(diǎn)對(duì)稱!
3.不等式的運(yùn)用過(guò)程中,千萬(wàn)要考慮"="號(hào)是否取到!
4.研究數(shù)列問(wèn)題不考慮分項(xiàng),就是說(shuō)有時(shí)第一項(xiàng)并不符合通項(xiàng)公式,所以應(yīng)當(dāng)極度注意:數(shù)列問(wèn)題一定要考慮是否需要分項(xiàng)!
以上就是廣州新東方素質(zhì)成長(zhǎng)中心為您提供高中數(shù)學(xué)解題常用公式及使用方法的全部?jī)?nèi)容,更多內(nèi)容請(qǐng)進(jìn)入學(xué)習(xí)資料 查看