亚洲日本在线在线看片,欧美一级a免费在线观看,亚洲 另类 在线 欧美 制服,精品婷婷乱码久久久久久蜜桃

  • <small id="frgz1"></small>
      <legend id="frgz1"><strong id="frgz1"></strong></legend>
      <small id="frgz1"></small>
        全國統(tǒng)一咨詢電話 4006-303-880
        匯上優(yōu)課 南昌培訓(xùn) 南昌學(xué)大教育 學(xué)習(xí)資料 高考數(shù)學(xué)函數(shù)重難點(diǎn)知識(shí)分析

        高考數(shù)學(xué)函數(shù)重難點(diǎn)知識(shí)分析

        2025-06-21 05:49閱讀:661 分享

        高考數(shù)學(xué)函數(shù)重難點(diǎn)知識(shí)分析。很多學(xué)校的高三考生已經(jīng)開始了考前體檢,這就證明真的該考試了現(xiàn)在這個(gè)階段,夯實(shí)基礎(chǔ)是最重要的學(xué)習(xí)內(nèi)容,所以今天就來給大家分析一下高考數(shù)學(xué)函數(shù)重難點(diǎn)知識(shí)。

        1572599977775373.jpg

        1. 函數(shù)的奇偶性

        (1)若f(x)是偶函數(shù),那么f(x)=f(-x) ;

        (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則 f(0)=0(可用于求參數(shù));

        (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或 (f(x)≠0);

        (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;

        (5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

        2. 復(fù)合函數(shù)的有關(guān)問題

        (1)復(fù)合函數(shù)定義域求法:若已知 的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求 f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即 f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

        (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

        3.函數(shù)圖像(或方程曲線的對(duì)稱性)

        (1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;

        (2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;

        (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

        (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;

        (5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;

        (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x= 對(duì)稱;

        4.函數(shù)的周期性

        (1)y=f(x)對(duì)x∈R時(shí),f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

        (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);

        (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);

        (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2 的周期函數(shù);

        (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2 的周期函數(shù);

        (6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數(shù);

        5.方程k=f(x)有解 k∈D(D為f(x)的值域);

        6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

        7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1);

        (3) l og a b的符號(hào)由口訣“同正異負(fù)”記憶; (4) a log a N= N ( a>0,a≠1,N>0 );

        8. 判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):(1)A中元素必須都有象且唯 一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

        9. 能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

        10.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:(1)定義域上的單調(diào)函數(shù)必有反函數(shù);(2)奇函數(shù)的反函數(shù)也是奇函數(shù);(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);(4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;(5) y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

        11.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系;

        12. 依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問題

        13. 恒成立問題的處理方法:(1)分離參數(shù)法;(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

        高考是我們?nèi)松械囊豁?xiàng)大事,也是我們?nèi)松飞系囊粋€(gè)重要轉(zhuǎn)折點(diǎn),所以我們一定要引起強(qiáng)烈的重視。對(duì)高考知識(shí)點(diǎn)的考察很重要,同樣也是對(duì)每個(gè)人學(xué)習(xí)方法和學(xué)習(xí)效率的檢測(cè)。

        以上就是南昌學(xué)大教育為您提供高考數(shù)學(xué)函數(shù)重難點(diǎn)知識(shí)分析的全部?jī)?nèi)容,更多內(nèi)容請(qǐng)進(jìn)入學(xué)習(xí)資料 查看

        溫馨提示: 提交留言后老師會(huì)第一時(shí)間與您聯(lián)系! 熱線電話:4006-303-880
        【學(xué)?!孔稍儫峋€: 4006-303-880
        以上信息知識(shí)產(chǎn)權(quán)歸具體機(jī)構(gòu)所有 | 招生合作 | 免責(zé)聲明 | 版權(quán)/投訴