數(shù)學是讓不少學生擔心的一門學科,如何才能掌握技巧,更好地利用有限的時間,讓自己取得一個不錯的成績,勵學國際小編整理了初中各個題型的解題技巧給大家,希望大家能在考試中取得理想的成績。
1、直接法:
根據(jù)選擇題的題設條件,通過計算、推理或判斷,最后得到題目的所求。
2、特殊值法:
(特殊值淘汰法)有些選擇題所涉及的數(shù)學命題與字母的取值范圍有關;在解這類選擇題時,可以考慮從取值范圍內(nèi)選取某幾個特殊值,代入原命題進行驗證,然后淘汰錯誤的,保留正確的。
3、淘汰法:
把題目所給的四個結論逐一代回原題的題干中進行驗證,把錯誤的淘汰掉,直至找到正確的答案。
4、逐步淘汰法:
如果我們在計算或推導的過程中不是一步到位,而是逐步進行,采用循序漸進的策略;每走一步都與四個結論比較一次,淘汰掉不可能的,這樣也許走不到最后一步,三個錯誤的結論就被全部淘汰掉了。
5、數(shù)形結合法:
根據(jù)數(shù)學問題的條件和結論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;使數(shù)量關系和圖形巧妙和諧地結合起來,并充分利用這種結合,尋求解題思路,使問題得到解決。
二、常用的數(shù)學思想方法
1、數(shù)形結合思想:
就是根據(jù)數(shù)學問題的條件和結論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;使數(shù)量關系和圖形巧妙和諧地結合起來,并充分利用這種結合,尋求解體思路,使問題得到解決。
2、聯(lián)系與轉化的思想:
事物之間是相互聯(lián)系、相互制約的,是可以相互轉化的。數(shù)學學科的各部分之間也是相互聯(lián)系,可以相互轉化的。如:代換轉化、已知與未知的轉化、特殊與一般的轉化、具體與抽象的轉化、部分與整體的轉化、動與靜的轉化等等。
3、分類討論的思想:
在數(shù)學中,我們常常需要根據(jù)研究對象性質(zhì)的差異,分各種不同情況予以考查;這種分類思考的方法,是一種重要的數(shù)學思想方法,同時也是一種重要的解題策略。
4、待定系數(shù)法:
當我們所研究的數(shù)學式子具有某種特定形式時,要確定它,只要求出式子中待確定的字母得值就可以了。為此,把已知條件代入這個待定形式的式子中,往往會得到含待定字母的方程或方程組,然后解這個方程或方程組就使問題得到解決。
5、配方法:
就是把一個代數(shù)式設法構造成平方式,然后再進行所需要的變化。配方法是初中代數(shù)中重要的變形技巧,配方法在分解因式、解方程、討論二次函數(shù)等問題,都有重要的作用。
6、換元法:
在解題過程中,把某個或某些字母的式子作為一個整體,用一個新的字母表示,以便進一步解決問題的一種方法。換元法可以把一個較為復雜的式子化簡,把問題歸結為比原來更為基本的問題,從而達到化繁為簡,化難為易的目的。
7、分析法:
在研究或證明一個命題時,又結論向已知條件追溯,既從結論開始,推求它成立的充分條件,這個條件的成立還不顯然;則再把它當作結論,進一步研究它成立的充分條件,直至達到已知條件為止,從而使命題得到證明。
8、綜合法:
在研究或證明命題時,如果推理的方向是從已知條件開始,逐步推導得到結論,這種思維過程通常稱為“由因導果”。
9、演繹法:
由一般到特殊的推理方法。
10、歸納法:
由一般到特殊的推理方法。
11、類比法:
眾多客觀事物中,存在著一些相互之間有相似屬性的事物,在兩個或兩類事物之間;根據(jù)它們的某些屬性相同或相似,推出它們在其他屬性方面也可能相同或相似的推理方法。
常用的數(shù)學思想方法:
⑴數(shù)形結合的思想方法。
⑵待定系數(shù)法。
⑶配方法。
⑷聯(lián)系與轉化的思想。
⑸圖像的平移變換。
以上就是邯鄲勵學個性化培訓學校為您提供初中數(shù)學所有題型答題技巧的全部內(nèi)容,更多內(nèi)容請進入學習資料 查看