亚洲日本在线在线看片,欧美一级a免费在线观看,亚洲 另类 在线 欧美 制服,精品婷婷乱码久久久久久蜜桃

  • <small id="frgz1"></small>
      <legend id="frgz1"><strong id="frgz1"></strong></legend>
      <small id="frgz1"></small>
        全國統(tǒng)一咨詢電話 4006-303-880
        匯上優(yōu)課 上海培訓(xùn) 上海昂立智立方教育 學(xué)習(xí)資料 高考數(shù)學(xué)六大解題思路介紹

        高考數(shù)學(xué)六大解題思路介紹

        2023-07-25 10:52閱讀:241 分享
        新聞導(dǎo)讀

        讀數(shù)學(xué)題的任務(wù)就是要理清解題思路,明確解題步驟,分析最佳解題切入點。下面是上海昂立智立方教育的小編為大家整理的相關(guān)內(nèi)容,希望對大家有所幫助。

        高考數(shù)學(xué)六大解題思路介紹

        1.函數(shù)與方程思想

        函數(shù)與方程的思想是中學(xué)數(shù)學(xué)最基本的思想。所謂函數(shù)的思想是指用運動變化的觀點去分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),再運用函數(shù)的圖像與性質(zhì)去分析、解決相關(guān)的問題。而所謂方程的思想是分析數(shù)學(xué)中的等量關(guān)系,去構(gòu)建方程或方程組,通過求解或利用方程的性質(zhì)去分析解決問題。

        2.數(shù)形結(jié)合思想

        數(shù)與形在一定的條件下可以轉(zhuǎn)化。如某些代數(shù)問題、三角問題往往有幾何背景,可以借助幾何特征去解決相關(guān)的代數(shù)三角問題;而某些幾何問題也往往可以通過數(shù)量的結(jié)構(gòu)特征用代數(shù)的方法去解決。因此數(shù)形結(jié)合的思想對問題的解決有舉足輕重的作用。

        解題類型

        ①"由形化數(shù)":就是借助所給的圖形,仔細觀察研究,提示出圖形中蘊含的數(shù)量關(guān)系,反映幾何圖形內(nèi)在的屬性。

        ②"由數(shù)化形":就是根據(jù)題設(shè)條件正確繪制相應(yīng)的圖形,使圖形能充分反映出它們相應(yīng)的數(shù)量關(guān)系,提示出數(shù)與式的本質(zhì)特征。

        ③"數(shù)形轉(zhuǎn)換":就是根據(jù)"數(shù)"與"形"既對立,又統(tǒng)一的特征,觀察圖形的形狀,分析數(shù)與式的結(jié)構(gòu),引起聯(lián)想,適時將它們相互轉(zhuǎn)換,化抽象為直觀并提示隱含的數(shù)量關(guān)系。

        3.分類討論思想

        分類討論的思想之所以重要,原因一是因為它的邏輯性較強,原因二是因為它的知識點的涵蓋比較廣,原因三是因為它可培養(yǎng)學(xué)生的分析和解決問題的能力。原因四是實際問題中常常需要分類討論各種可能性。

        解決分類討論問題的關(guān)鍵是化整為零,在局部討論降低難度。

        常見的類型

        類型1∶由數(shù)學(xué)概念引起的的討論,如實數(shù)、有理數(shù)、絕對值、點(直線、圓)與圓的位置關(guān)系等概念的分類討論;

        類型2:由數(shù)學(xué)運算引起的討論,如不等式兩邊同乘一個正數(shù)還是負(fù)數(shù)的問題;

        類型3:由性質(zhì)、定理、公式的限制條件引起的討論,如一元二次方程求根公式的應(yīng)用引起的討論;

        類型4∶由圖形位置的不確定性引起的討論,如直角、銳角、鈍角三角形中的相關(guān)問題引起的討論。

        類型5:由某些字母系數(shù)對方程的影響造成的分類討論,如二次函數(shù)中字母系數(shù)對圖象的影響,二次項系數(shù)對圖象開口方向的影響,一次項系數(shù)對頂點坐標(biāo)的影響,常數(shù)項對截距的影響等。

        分類討論思想是對數(shù)學(xué)對象進行分類尋求解答的─種思想方法,其作用在于克服思維的片面性,全面考慮問題。分類的原則:分類不重不漏。

        4.車轉(zhuǎn)化與化歸思想

        轉(zhuǎn)化與化歸是中學(xué)數(shù)學(xué)最基本的數(shù)學(xué)思想之一,是一切數(shù)學(xué)思想方法的核心。數(shù)形結(jié)合的思想體現(xiàn)了數(shù)與形的轉(zhuǎn)化;函數(shù)與方程的思想體現(xiàn)了函數(shù)、方程、不等式之間的相互轉(zhuǎn)化;分類討論思想體現(xiàn)了局部與整體的相互轉(zhuǎn)化,所以以上三種思想也是轉(zhuǎn)化與化歸思想的具體呈現(xiàn)。

        轉(zhuǎn)化包括等價轉(zhuǎn)化和非等價轉(zhuǎn)化,等價轉(zhuǎn)化要求在轉(zhuǎn)化的過程中前因和后果是充分的也是必要的;不等價轉(zhuǎn)化就只有一種情況,因此結(jié)論要注意檢驗、調(diào)整和補充。轉(zhuǎn)化的原則是將不熟悉和難解的問題轉(zhuǎn)為熟知的、易解的和已經(jīng)解決的問題,將抽象的問題轉(zhuǎn)為具體的和直觀的問題;將復(fù)雜的轉(zhuǎn)為簡單的問題;將一般的轉(zhuǎn)為特殊的問題;將實際的問題轉(zhuǎn)為數(shù)學(xué)的問題等等使問題易于解決。

        常見的轉(zhuǎn)化方法

        ①直接轉(zhuǎn)化法:把原問題直接轉(zhuǎn)化為基本定理、基本公式或基本圖形問題;

        ②換元法:運用"換元"把式子轉(zhuǎn)化為有理式或使整式降冪等,把較復(fù)雜的函數(shù)、方程、不等式問題轉(zhuǎn)化為易于解決的基本問題;

        ③數(shù)形結(jié)合法:研究原問題中數(shù)量關(guān)系(解析式)與空間形式(圖形)關(guān)系,通過互相變換獲得轉(zhuǎn)化途徑;

        ④等價轉(zhuǎn)化法:把原問題轉(zhuǎn)化為一個易于解決的等價命題,達到化歸的目的;

        ⑤特殊化方法:把原問題的形式向特殊化形式轉(zhuǎn)化,并證明特殊化后的問題,使結(jié)論適合原問題;

        ⑥構(gòu)造法:“構(gòu)造"—個合適的數(shù)學(xué)模型,把問題變?yōu)橐子诮鉀Q的問題;

        ⑦坐標(biāo)法:以坐標(biāo)系為工具,用計算方法解決幾何問題也是轉(zhuǎn)化方法的一個重要途徑。

        5.特殊與—般思想

        用這種思想解選擇題有時特別有效,這是因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據(jù)這一點,同學(xué)們可以直接確定選擇題中的正確選項。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣有用。

        6.極限思想

        極限思想解決問題的一般步驟為:一、對于所求的未知量,先設(shè)法構(gòu)思一個與它有關(guān)的變量;二、確認(rèn)這變量通過無限過程的結(jié)果就是所求的未知量;三、構(gòu)造函數(shù)(數(shù)列)并利用極限計算法則得出結(jié)果或利用圖形的極限位詈直接計算結(jié)果。

        以上就是上海昂立智立方教育為您提供高考數(shù)學(xué)六大解題思路介紹的全部內(nèi)容,更多內(nèi)容請進入學(xué)習(xí)資料 查看

        溫馨提示: 提交留言后老師會第一時間與您聯(lián)系! 熱線電話:4006-303-880
        上海昂立智立方教育地址:莘莊校區(qū)、七寶校區(qū)、肇嘉浜路校區(qū)、番禺路校區(qū)、長壽校區(qū)、人廣校區(qū)...
        【學(xué)?!孔稍儫峋€: 4006-303-880
        以上信息知識產(chǎn)權(quán)歸具體機構(gòu)所有 | 招生合作 | 免責(zé)聲明 | 版權(quán)/投訴